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ABSTRACT 
 

Successful GPS operations are based on a basic 
equation: the range measurement equation, |rr(tr) – rs(ts)| 
= c(tr –ts), in an earth-centered inertial (ECI) frame, 
corrected for range biases. The calculations utilizing this 
equation show that (1) the speed of light is independent of 
the source’s translational motion relative to the ECI frame 
if the receiver is stationary; (2) the speed of light is 
dependent on the receiver’s tranlational motion relative to 
the ECI frame if the source is stationary; (3) for reference 
frames which are uniformly moving relative to the ECI 
frame, although the distances between the sources and the 
receivers are the same, their ranges in the ECI frame are 
different, so the propagation times are different and the 
speeds of light are different. Therefore, the ECI frame is a 
preferred frame near the earth. 

To verify this experimentally, a practical and crucial 
experiment in which no clock synchronization is required 
(although simultaneity is the key of GPS operations and 
the relativity of simultaneity of Special Relativity 
disagrees with the basic operational principle of GPS) has 
been designed to check whether or not the propagation 
time changes in different frames. It can be predicted that 
the crucial experiment will give a result contradicting the 
two principles of Special Relativity. The crucial 
experiment can be further simplified by using GPS, and it 
can be simulated easily with GPS simulators.  

Furthermore, the falsification of the two principles of 
Special Relativity and the calculations based on the GPS 
equation illustrate a new way for inertial navigation – 
measuring speed directly. A prototype of the new 
speedometer based on the crucial experiment is given.  
 
INTRODUCTION 
 

Special Relativity is based on two principles: the 
principle of relativity and the principle of the constancy of 
the speed of light. The most controversial part of Special 
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Relativity involves the speed of light for an observer in 
motion. The principle of the constancy of the speed of 
light asserts that light in vacuum always has a definite 
speed of propagation that is independent of the state of the 
motion of the observer [1], and the principle of relativity 
states that the speed of light is a constant in all inertial 
frames moving relative to each other. In fact, this part of 
Special Relativity really has the least experimental 
support: up to now, all the experiments used to verify 
Special Relativity have been done with the earth as the 
reference frame [2]. No one has conducted an experiment 
which checks if the speed of light is still c in a reference 
frame moving relative to the earth. No one has conducted 
an experiment with a receiver (observer) moving relative 
to the earth to check the constancy of the speed of light. In 
the past, this is because the technology was not good 
enough and people only used ‘Gedanken’ experiments. 
But today, GPS has in fact provided a large ‘laboratory’ 
and ‘instruments’ for tests of the speed of light: moving 
sources and moving receivers; accurate atomic clocks in 
both the sources and (some) receivers; precise knowledge 
of the positions of the sources and receivers and long 
distances between the sources and the receivers; signals 
carrying the information of positions and times; etc., 
almost all the ingredients needed for tests of speed of light 
for moving observers. 

GPS is a Timing-Ranging system. The operations of 
GPS are based on the range measurement equation in an 
earth-centered inertial (ECI) frame [3]: 

| rr(tr) – rs(ts) | = c(tr – ts). 
Here ts is the instant of transmission of the signal 

from the source, and tr is the instant of reception at the 
receiver; rs(ts) is the position of the source at the 
transmission time, and rr(tr) is the position of the receiver 
at the reception time. Besides, GPS considers some range 
biases: the receiver clock bias ∆δr, the satellite clock bias 
∆δs, the satellite orbital error ∆D, the ionospheric 
refraction ∆I, and the tropospheric refraction ∆T [4]. 



Successful applications of GPS have shown that the 
range measurement equation corresponds well with 
experimental data, and therefore, is commonly accepted as 
being correct. The equation states that the traveling time 
of light multiplied by the speed of light gives the distance 
that light traveled between the position of the satellite at 
transmission time ts and the position of the receiver’s 
antenna at reception time tr. But what does the correctness 
of this equation mean for the principle of the constancy of 
the speed of light, and therefore, for Special Relativity? 
Some people [1] think that the range measurement 
equation is based on the constancy of the speed of light. 
On the surface, this may appear to be true: c, the speed of 
light, is the only velocity term that appears within the 
equation.  Expressions such as c-v and c+v, which are 
often seen in discussions of Special Relativity and 
classical physics, do not exist in the equation. Therefore, 
some people would conclude that if this equation is 
correct, Special Relativity is correct; if this equation has 
been proved with a high degree of accuracy, Special 
Relativity has been proved with a high degree of accuracy. 
For example, it has been concluded [5] that Special 
Relativity had been confirmed to the limit of   δc/c < 
5x10-9. 

But we should not judge things by their appearance; 
we must try to grasp their essences. As we mentioned 
before, the notion that the speed of light is a constant in a 
reference frame, here the ECI frame, really is not a 
characteristic of Special Relativity. The characteristic of 
Special Relativity is that the speed of light is a constant in 
all reference frames moving relative to each other, or for 
all observers, moving or stationary. If we analyze the 
implication of the range measurement equation carefully, 
we will find that, contrary to what its appearance tells us 
and what some people think, the correctness of the GPS’ 
range measurement equation actually leads to the 
incorrectness of the principle of the constancy of the 
speed of light, and furthermore, the principle of relativity. 
In fact, this is quite understandable if we compare GPS 
with Sonar systems. Recall that in underwater navigation, 
Sonar uses the same range measurement equation in a 
reference frame based on water to calculate the distance 
traveled by sound even though the sound receiver is 
moving relative to water. The difference there is that the 
speed of sound in water, a, is used instead of the speed of 
light in vacuum, c. However, no one would emphasize the 
constancy of the speed of sound, and contrarily, every one 
agrees the speed of sound is dependent on the motion of 
the sound receiver. 
 

To make the discussion complete, some of following 
paragraphs are similar to those in [6]. 
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A SOURCE MOVING RELATIVE TO THE ECI 
FRAME 
 

Most GPS sources move in circular motions, e.g., 
GPS satellites and DGPS sources moving with the rotation 
of the earth. But from the theoretical point of view, we 
will only investigate sources that are moving uniformly 
relative to the ECI frame. 

 
Let us suppose that we have two sources, one 

stationary and one moving translationally with a speed of 
v, and a stationary receiver. The distance between the 
stationary source and the receiver is L and the moving 
source passes the stationary source at t0 (fig. 1). When will 
the receiver receive the signals emitted at t0 from the two 
sources according to the range measurement equation? 

For the stationary source, S1, and the receiver, R, we 
have (using one-dimensional expression) 
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Hence, t – t0 = [R0 – y1(t0)]/c = (R0 – S0)/c = L/c. 
 
For the moving source, S2, and the receiver, R, we 
have  
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Hence, t – t0 = [R0 – y2(t0)]/c = (R0 – S0)/c = L/c. 
That means, at the same time instant t, receiver R will 

receive the two signals emitted at t0 from the two sources, 
one stationary and one moving, which are at the same 
distance from the receiver at t0. Therefore, we can 
conclude that the speed of light is independent of the 
source’s translational motion relative to the ECI frame. 

Fig. 1 Moving and stationary sources 
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A RECEIVER MOVING RELATIVE TO THE ECI 
FRAME 

 
Most GPS receivers are moving relative to the ECI 

frame too. Some of them are in circular motion, e.g., the 
receivers on the ground stations and the receivers fixed on 
the earth; Some of them are in translational motion, e.g., 
on missiles, on airplanes and on cars. 

Let us suppose that we have a stationary source and 
two receivers, one stationary and one moving 
translationally. The distance between the source and the 
stationary receiver is L. The moving receiver passes the 
stationary receiver at t0 (fig. 2). When will the two 
receivers receive the signal emitted at t0 from the source 
according to the range measurement equation? 

     For the source, S, and the stationary receiver, R1, we 
have 
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     Hence, t – t0 = [R0 – ys(t0)]/c = (R0 – S0)/c = L/c. 
     For the source, S, and the moving receiver, R2, we 
have 
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      Hence, t – t0 = [R0 – ys(t0)]/(c – v) = (R0 – S0)/(c – v) 
=  L/(c – v). 
      For a signal transmitted from the source at t0, the two 
receivers, one stationary and one moving, will receive it at 
different instants, although the distances between them 
and the source at t0 are the same. Therefore we can 
conclude that the speed of light is dependent on the 
translational motion of the receiver. 

Contrary to the appearance of the range measurement 
equation that the speed of the receiver, v, does not appear 
explicitly, the speed of the receiver is implied in the 
definition of the position of the receiver, i.e., the position 
of the receiver at the reception time. Compared with the 

Fig. 2 Moving and stationary receivers 
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position of the stationary receiver at the reception time, 
the position of the moving receiver at the reception time is 
different, and the difference is proportional to the speed of 
the moving receiver, v. 
 
FRAMES MOVING RELATIVE TO THE ECI 
FRAME 
 

Most GPS applications involve moving sources and 
moving receivers, although the velocity of the source and 
the velocity of the receiver are not necessarily the same. 
Let us assume that they have the same velocity, therefore 
they constitute a frame with a constant distance between 
the source and the receiver. Discussing different frames in 
the ECI frame has a greater theoretical significance. 

Let us suppose that both source S and receiver R 
move uniformly in a straight line and have the same 
velocity v. The distance between them is L, a constant. 
We can look at two different cases of signal transmission. 

In case 1, a signal is transmitted from source S at t0 

and the direction of the source and receiver motion is the 
same as the direction of the propagation of light (fig. 3a). 
In this case, we have 
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Hence, t – t0 = [R0 – ys(t0)]/(c – v) = (R0 – S0)/(c – v) 
= L/(c – v). 
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In case 2, a signal is transmitted from source S at t0, 
but this time, the direction of the motion is opposite to the 
direction of the propagation of light (fig. 3b). 
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Hence, t – t0 = [R0 – ys(t0)]/(c + v) = (R0 – S0)/(c + v) 
= L/(c + v). 

 

In these two cases, although the distance between the 
source and the receiver is always the same, the receiver 
will receive the signal at different instants, one later than 
the other, depending on whether the direction of the 
propagation of the signal is the same as, or opposite to, 
the direction of the translational motion.  

The source and the receiver constitute a frame. In 
fact, the source and the receiver in these two cases can be 
viewed as two different frames uniformly moving relative 
to the ECI frame. In frame 1 (case 1), during the 
propagation time, the receiver moves away from the 
source, therefore, the range in the ECI frame is longer 
than L. R1 = |R0 + vL/(c –v) – S0| = Lc/(c-v). In frame 2 
(case 2), during the propagation time, the receiver moves 
towards the source, and its range in the ECI frame is 
shorter than L. R2 = |R0 – vL/(c + v) – S0| = Lc/(c + v). 
Although the distances between the source and the 
receiver in these two frames are the same, their ranges in 
the ECI frame are different. Therefore, the propagation 
times are different, and the speeds of light are different. 
 

GLOBAL SIMULTANEITY VS. THE RELATIVITY 
OF SIMULTANEITY 

 

In any debate about the speed of light, the problem of 
simultaneity is always a focus. Special Relativity claims 
the relativity of simultaneity which states that two events 
occurring at two different places which are viewed as 
simultaneous for an observer in a frame, usually will not 
be simultaneous if viewed for an observer in another 
frame. But contrary to this, simultaneity is the key to GPS 
operations. GPS is a Timing–Ranging system: it does not 
directly measure the distance between two places where 
two events, i.e. signals transmitting and receiving, occur. 
It measures the difference of the two instants when these 
two events happen and then, the distance is calculated 
using the range measurement equation, therefore any 
ambiguity of simultaneity will cause big positioning 
errors. GPS, especially its space segment and control 
segment, make a huge effort to establish and maintain a 
GPS system time, or simply, GPS time [7]. In a scope 
where GPS is applied, roughly a scope with diameter of 
50,000 km or bigger, if one is using GPS, one is using 
GPS time and therefore the concept of simultaneity of 
GPS: two events happened at two different places, (x1, y1, 
z1, t1) and (x2, y2, z2, t2), are simultaneous if t1 = t2. This is 
true no matter who the observer (receiver) is, where the 
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receiver is, what its status is, or what its speed is. This is 
the basic operational principle of GPS. We can call it 
Global Simultaneity.  

In the books about Special Relativity, the most 
commonly cited example about the relativity of 
simultaneity is the example about the railway platform and 
the moving train [8]. It says that two events (e.g., the two 
strokes of lightning A and B) which are simultaneous with 
reference to the platform are not simultaneous with 
respect to the moving train and vice versa. But now GPS 
receivers have been utilized extensively on railway 
platforms and moving trains, and lightning at two different 
places, A and B, conceptually is the same as the emissions 
of GPS signals from two satellites or two DGPS stations. 
In fact, if two signals are emitted from two satellites or 
two DGPS stations at the same GPS time, both the GPS 
receiver on the railway platform and the GPS receiver in 
the moving train would both acknowledge the two events, 
the emissions of the signals, to be simultaneous. Without 
this basic acknowledgement, the GPS receivers can not 
function at all.    
 

THE CRUCIAL EXPERIMENT OF SPECIAL 
RELATIVITY 
 

We have shown that the correctness of the range 
measurement equation contradicts the principle of the 
constancy of the speed of light and the principle of 
relativity. We have also indicated that the relativity of 
simultaneity disagrees with the purpose of GPS system 
time and the basic operational principle of GPS. Due to 
the popularity of Special Relativity, a lot of people still 
will not accept these assertions unless there is 
experimental support for them. Therefore, we would 
examine a crucial experiment, in which the result can be 
used to refute or verify Special Relativity from 
everybody’s point of view. More importantly, in this 
experiment, simultaneity, or the synchronization of the 
clocks, is not a concern. 
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Fig. 4 Crucial experiment 
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We mount two atomic clocks with the same construction, 
signal transmitter, reflector, and receivers on the two ends, 
points A and B, of a vehicle, with distance L between A 
and B. First (fig. 4a), the vehicle is stationary relative to 
the earth (facing due South or due North, so when the 
vehicle moves, the direction of the velocity is due South 
or due North, eliminating the effect of the rotation of the 
earth.) The two clocks are not synchronized with each 
other. A signal is transmitted from A at t1(A) (according to 
clock A) to B (arriving at t1(B) according to clock B) and 
reflected back to A (arriving at t’1(A) according to clock 
A). By the readings of clocks, we can calculate the 
difference of the nominal travelling times for two 
directions, )t1 = [t’1(A) – t1(B)] – [t1(B) – t1(A)]. (We say 
that the travelling times t1(B) – t1(A) and t’1(A) – t1(B) are 
nominal because the two clocks are not synchronized. For 
example, t1(B) – t1(A) could be negative if clock B is too 
much behind clock A.) Then let the vehicle move. First let 
it move due South, stop, then due North. We repeat the 
same measurement when the vehicle moves back to its 
original position with a constant speed of v (fig. 4b). We 
will obtain )t2 = [t’2(A) – t2(B)] – [t2(B) – t2(A)]. If the 
readings of the clocks show that )t1 is different from )t2, 
we think everybody would agree that the experiment 
refutes the principle of the constancy of the speed of light, 
and the principle of relativity (because we now find a 
difference between two uniform motion states), especially 
noting that the relativity of simultaneity is not a problem 
here, because the synchronization of clocks is not 
required. If )t1 is equal to )t2, then the experiment 
verifies Special Relativity. Notice that, because the two 
clocks are not synchronized, we can not measure the value 
of the speed of light. But we can check whether or not the 
propagation time changes, i.e., whether or not the speed of 
light changes when the distance does not change. 

Let us calculate )t1 and )t2 according to the range 
measurement equation. First, we assume that both clocks 
have GPS time for convenience. Later we will show that 
the source clock bias, the receiver clock bias and other 
range biases will not affect the conclusion here. 

In case 1, when the vehicle is stationary, for the signal 
transmitted from A to B, we have 
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Hence, [t1(B) – t1(A)] = {yA[t1(A)]  – yB[t1(A)]}/c = 
L/c. 
       For the signal reflected back from B to A, we have  
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Hence, [t’1(A) – t1(B)] = {yA[t1(B)]  – yB[t1(B)]}/c = 
L/c. 

In this case, we have ∆t1 = [t’1(A) – t1(B)] – [t1(B) – 
t1(A)] = 0. 
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In case 2, when the vehicle is uniformly moving 
North with a speed of v, for the signal emitted from A to 
B, we have 
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Hence, [t2(B) – t2(A)] = {yA[t2(A)]  – yB[t2(A)]}/(c + 
v) = L/(c + v).                 (1) 

For the signal reflected back from B to A, we have 
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Hence, [t’2(A) – t2(B)] = {yA[t2(B)]  – yB[t2(B)]}/(c – 
v) = L/(c – v).           (2) 

Therefore, we have ∆t2 = [t’2(A) – t2(B)] – [t2(B) – 
t2(A)] = L/(c – v) – L/(c + v) ≈  2vL/c2, neglecting the 
quantities of the second and higher order of v/c. 

 
Now let us consider the range biases involved in GPS 

calculation, first, the source clock bias and the receiver 
clock bias. Let us eliminate the assumption of having GPS 
time in both clocks and find the result. Suppose that 
neither clock A nor clock B uses GPS time, and the two 
clocks are not synchronized with each other: clock A 
would be δtA ahead of GPS time and clock B would be δtB 
ahead of GPS time, Then, in case 1, where the vehicle is 
stationary, we will record a ∆t1 = 2δtA  − 2 δtB, in stead of 
recording ∆t1 = 0. In case 2, when the vehicle is moving, 
we will record a ∆t2 = 2vL/c2 + 2δtA  − 2δtB.  Therefore, 
when we calculate the time difference between two cases, 
we will find the same ∆t = ∆t2 - ∆t1  = 2vL/c2, whether 
clock B is synchronized with clock A or not, and whether 
the clocks are synchronized with GPS time or not. As for 
the other range biases, the source position error is 
irrelevant here, and the ionospheric delay and 
tropospheric delay are the same for these two cases, 
therefore, there is no net effect caused by them.  

 
Hence, according to the range measurement equation 

corrected for range biases, when we conduct this 
experiment, we will find a time difference of ∆t = ∆t2 - ∆t1  
= 2vL/c2 between the two cases. It is a first-order effect 
pertaining to the direction of motion. The Lorentz 
contraction, which is a second-order effect and does not 
pertain to the direction of motion, is irrelevant here. Time 
dilation, and hence, the effect of moving clocks are 
relevant here.  However, since both clocks move in 
exactly the same way, there will be no net effect on the 
time difference from the two moving clocks. Therefore, 
the range measurement equation’s correctness has lead to 
the prediction that the crucial experiment will refute the 
two principles of Special Relativity.  

 
It is suggested in [9] that this experiment can be 

implemented by mounting the two clocks not in one 
moving object, but in two separate objects that move in a 



straight line, one after another, with the same velocity. 
This way, L, the distance between the two clocks can be 
increased substantially, and hence, the predicted time 
difference can reach up to 1 nanosecond, a value that is 
relatively easy to detect with current technology. Also, the 
effect of moving clocks, including time dilation, and the 
effect resulting from the fact that L is not strictly constant 
are discussed there in detail, and it has been indicated that 
these effects will not prevail over the time difference we 
are trying to detect. In fact, ∆t = 2vL/c2 is the time 
difference of light propagation between two directions and 
between two cases. Therefore, if the light paths of the two 
directions are slightly different, as long as the difference is 
the same for both cases, or if the light paths of the two 
cases are slightly different, as long as the difference is the 
same for both directions, the time difference, 2vL/c2, will 
exist. 
 
THE MICHELSON-MORLEY EXPERIMENT 
 

The Michelson-Morley experiment [10] is a second-
order experiment because the light rays travel round-trips. 
The possible time difference there, ∆t = (2L/c)(v/c)2, is 
too small for even the most advanced atomic clocks. But 
we can still calculate the possible time difference in the 
Michelson-Morley experiment using the range 
measurement equation. 

 

Let us calculate the time elapsed for the horizontal 
arm (fig. 5) only. How much time is needed for a light ray 
travelling from A to B and back to A? Obviously, it is 
similar to the calculation in the previous paragraph and 
the difference is that we now want to have the summation 
of two travelling times in stead of the subtraction of two 
travelling times. According to (1) and (2), we have  
t = [t’2(A) - t2(B)] + [t2(B) - t2(A)] = L/(c - v) + L/(c + v).  
In fact, this is the result we can find in any physics 
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Fig. 5  Michelson-Morley experiment 
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textbooks when the Michelson-Morley experiment is 
discussed.  It seems that the range measurement equation 
tells us that in the Michelson-Morley experiment, a time 
difference, therefore, a non-null result would be found. So 
far, the Michelson-Morley experiment has been repeated 
many times, but no concrete fringe shift has been found. 
Why? One possible reason would be that the range 
measurement equation is correct in the ECI frame. 
Therefore, the motion should be in this frame too. We 
should conduct the Michelson-Morley experiment in a 
platform translationally moving relative to the ECI frame 
and its speed should be fast enough to produce a 
detectable fringe shift. One example would be conducting 
the Michelson-Morley experiment in a space shuttle [2]. 

Another example would be using fiber-optic 
Michelson interferometer for a fiber-optic Michelson-
Morley experiment (fig. 6). Like in fiber-optic 
gyroscopes, the optical paths in fiber-optic Michelson 
interferometers can be few kilometers long, therefore the 
expected time difference can be much longer and the 
required speed can be lower.  
 

 
THE ECI FRAME IS A PREFERRED FRAME 
NEAR THE EARTH 
 

It is well known that the purpose of Michelson-
Morley experiment was to detect the ether, or a preferred 
frame for light propagation. If the crucial experiment does 
show the time difference between the two cases, we can 
conclude that the speed of light is c only in the ECI frame 
and the speed of light is not c in the frames moving 
relative to the ECI frame. Therefore, we do indeed find a 
preferred frame, that is the ECI frame.  

The hierarchy of structure in the universe proceeds 
from satellites to planets, to stars, to galaxies, to clusters 
of galaxies, etc. The earth is a relatively small part of the 
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Fig. 6 Fiberoptic Michelson-Morley experiment 



solar system. It is unconceivable that the ECI frame is a 
preferred frame for the whole solar system, or for the 
whole universe. Reasonably, the ECI frame is only a 
terrestrial preferred frame, a preferred frame near the 
earth.  
 
SIMPLIFYING THE CRUCIAL EXPERIMENT 
FURTHER USING GPS 
 

When we say that the correctness of the range 
measurement equation leads to the incorrectness of the 
two principles of Special Relativity, we mean it not only 
qualitatively as we mentioned before, but also 
quantitatively. The difference between what Special 
Relativity predicts and what the range measurement 
equation calculates is an item of vL/c (for length) or vL/c2 
(for time). This item is ‘big’ in GPS applications because 
L is about 20,000km. Therefore, vL/c reaches 200m when 
v = 3 km/s (speed of missiles), it reaches 20m when v = 
300 m/s (speed of airplanes), and it reaches 2 m when v = 
30 m/s (speed of cars). GPS has reached unprecedented 
precision of positioning up to the order of millimeters 
which is much smaller than the values listed above. 
Therefore, quantitatively, GPS practices have proved the 
correctness of the range measurement equation and the 
incorrectness of the two principles of Special Relativity. 
 

The crucial experiment we proposed before is a 
practical one. But we can simplify it further using GPS: 
assume that two satellites, S1 and S2, are located on the 
extension of line AB (fig. 7), then it is not necessary to 
have a signal transmitter at A and a reflector at B. What 
we need are only GPS receivers at A and B, and we can 
calculate the times needed as t(A →B) = t(S1 →B) - 
t(S1 →A) and t(B →A) = t(S2 →A) - t(S2 →B). We can 
conduct the experiment in two parts. In part 1, A and B 
move South (to eliminate the effect caused by the rotation 
of the earth) with a speed of v and in part 2, A and B 
move North with a speed of v. Special Relativity predicts 
that there is no time difference between the two parts, but 
the calculation of the range measurement equation tells us 
that we will find a time difference in the experiment, ∆t = 

4vL/c2 (the time difference is doubled because in both two 
parts, A and B move South or North and all the 
discussions about clock synchronization of the crucial 
experiment can be applied here too).   It reaches 4 ns 
when L = 3,000 km and v = 30 m/s (speed of cars).  
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Fig. 7 Simplifying the crucial experiment (ideal case) 
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Realistically, the assumption that GPS satellites are 
exactly located on the extension of line AB is unpractical 
and almost unachievable. Any small shift of the positions 
of satellites from the extension of line AB will cause big 
errors because the distances between satellites and A or B 
are much longer than the distance between A and B. Then, 
is it still possible to find a way to simplify the crucial 
experiment? It is possible if we recall how Galileo 
overcame the seemly inevitable difficulty that a perfectly 
frictionless and perfectly horizontal track did not exist 
when he conducted the experiment that led him to his Law 
of Inertia. He used two inclined planes set end-to-end and 
changed the tilt of the second track. The ball always 
reached a vertical height that was almost the same as it 
started from. Then Galileo argued that if the second track 
were perfectly frictionless and perfectly horizontal, the 

ball would roll forever. We can gain a good deal of 
enlightenment from this famous experiment. We can 
conduct the experiment with different positions of the 
satellites, then, different inclinations to line AB (fig. 8). 
According to the range measurement equation, we will 
have the result as 
[(tS1B1 – tS1A1) - (tS2A1 – tS2B1)] - [(tS1B2 – tS1A2) - (tS2A2 – 
tS2B2)] = 2v(D1B – D1A)cosθ1/c

2 + 2v(D2A – D2B)cosθ2/c
2. 

 
If we can find, from the results of the experiments, 

that this is true for different θ1and θ2, then we can 
conclude that it will be true for θ1 = 0 and θ2= 0 also. It 
means (tA1B1 – tB1A1) - (tA2B2 – tB2A2) = 4vL/c2, and 
therefore, the two principles of Special Relativity will be 
falsified.  
 
SIMULATION OF THE CRUCIAL EXPERIMENT 
WITH A GPS SIMULATOR 
 

A GPS simulator is a good tool for GPS applications. 
Since it can produce GPS signals and simulate the motion 
of the receiver, a user in the lab can utilize the GPS 
simulator and receivers to simulate real GPS applications, 
e.g., airplane landing, ship steering, and spacecraft 
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Fig. 8 Simplifying the crucial experiment (real case) 



rendezvous. The GPS simulator is particularly useful for 
simulating the crucial experiment here since the motion of 
the receiver which is the most difficult part of the 
experiment can be easily achieved using the simulator. 
Also the simulator can easily place the GPS satellites at 
the exact locations on the extension of line AB as 
mentioned before.  
 

Let us utilize a GPS simulator and two receivers, A 
and B. The two receivers need not necessarily be high 
grade receivers, since in simulation, we can make the 
distance between A and B big enough, so that the 
expected time difference reaches microseconds. Receiver 
A has a clock bias δtA, and receiver B has a clock bias δtB, 
and generally, δtA and δtB are not the same. This means 
that the two receivers are not synchronized, therefore, the 
relativity of simultaneity is not an issue in the simulation 
of the crucial experiment.  We simulate four cases 
respectively: (1) satellite S1 and receiver A; (2) satellite S1 
and receiver B; (3) satellite S2 and receiver B; (4) satellite 
S2 and receiver A (fig. 9). In these cases, S1 and S2 are 
stationary satellites and the distance between S1 and S2 is 
40,000 km and receivers A and B are always on the 
straight line S1S2. The starting position of receiver A at t = 
0 is at a distance of 5,000 km from S1. At first, receiver A 
is stationary relative to the ECI frame for 2 seconds (A1), 
then it moves back (towards S2), stops, and moves forward 
(towards S1). At the instant of t = 10 seconds, it reaches 
the original position with a constant speed of 3 km/s (A2). 
The motions of receiver B are exactly the same as those of 
receiver A, the only difference is that the starting position 
of receiver B at t = 0 is at a distance of 5,000 km from S2. 
this means that the distance between the two receivers is 
always 30,000 km. 
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Fig. 9 Simulation of the crucial experiment          
          using a GPS simulator 
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In case 1, we can find the propagation time 
t(S1 →A1) and t(S1 →A2), and in other cases, we can 
find, respectively, t(S1 →B1) and t(S1 →B2), t(S2 →B1) 
and t(S2 →B2), and finally,  t(S2 →A1) and t(S2 →A2). 
Therefore, we can find  
[(tS2A2 – tS2B2) - (tS1B2 – tS1A2)] - [(tS2A1 – tS2B1) - (tS1B1 – 
tS1A1)]. 
Since A and B are located on the straight line S1S2, it 
becomes (tB2A2 – tA2B2) – (tB1A1 – tA1B1) ≡∆t2 – ∆t1 in the 
crucial experiment. 

Utilizing the GPS equation and correcting for all the 
range biases, we can conclude that we will get  [(tS2A2 – 
tS2B2) - (tS1B2 – tS1A2)] - [(tS2A1 – tS2B1) - (tS1B1 – tS1A1)] = 
2vL/c2 = 2 x3km/sx30,000km/c2 = 2µs.  

 
As we mentioned before, Lorentz contraction is a 

second order effect and it is not an issue here. In fact, the 
Lorentz contraction in this case (v2L/2c2) is only 1.5 mm, 
and it will cause a time difference of 5 ps (<< 2µs). The 
only effect we can not simulate is that the clocks in the 
receivers become slower because of the motion of the 
receivers. But this should not affect the conclusion here. 
First, the movements of both receivers are the same, and 
clock rate changes in both receivers are the same. 
Therefore, there is no net effect on the time difference 
detected. Second, according to the calculation (rate 
change of v2/2c2), the changes of clocks in 8 seconds 
should be a small amount compared to the time difference 
detected.  
 

The GPS simulators have been utilized extensively 
and successfully in a lot of applications. That means the 
results of simulations match with the real world. 
Therefore, we could conduct the simulation of the crucial 
experiment on a GPS simulator and conclude that the 
crucial experiment in the real world should show the same 
result, i.e., a result refuting the two principles of Special 
Relativity.  
 
A NEW WAY FOR INERTIAL NAVIGATION – 
MEASURING SPEED DIRECTLY 
 

It is well known that inertial navigation utilizes an 
accelerometer for linear acceleration and a gyroscope for 
rotation. Linear speed is determined by integrating the 
accelerometer output and cannot be measured directly.  
Why? Because the principle of relativity claims that 
motion is purely relative, and therefore, it is impossible, 
using instruments within inertial frame itself, to 
distinguish any one such frame from any other. But from 
the calculations given before, we understand the principle 
of relativity could not true. If the crucial experiment 
shows a result refuting the principle of relativity, 
naturally, it also tells us that it is possible to distinguish 
one inertial frame from other inertial frames, hence the 



speed relative to the ECI frame can be measured directly. 
In fact, we can design a prototype of a new speedometer 
immediately from the crucial experiment, because the 
crucial experiment shows a time difference ∆t = 2vL/c2, 
and therefore, the speed v = ∆t c2/2L. 
 

Mount two atomic clocks with the same construction, 
a light source and two reflectors on the two ends, points A 
and B, of a rod with length of L (fig. 10). A light pulse is 
reflected from A at t1(A) (according to clock A) to B 
(arriving at t1(B) according to clock B) and reflected back 
to A (arriving at t’1(A) according to clock A). By the 

readings of clocks, we can calculate the difference of the  
nominal travelling times for two directions, ∆t1 = [t’1(A) – 
t1(B)] – [t1(B) – t1(A)]. We can get a ∆t0 when the rod is 
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stationary in ECI frame. According to the calculations 
mentioned before and if confirmed by the crucial 
experiment, for any speed of the rod relative to ECI 
frame, v, ∆t = ∆t1 – ∆t0 = 2vL/c2. There, v is positive if the 
direction of the speed is from B to A and v is negative if 
the direction of the speed is from A to B.  As we 
mentioned before, utilizing the time difference between 
the propagation times of two opposite directions will 
eliminate the possible error caused by the change of the 
length of the rod.  

 
If we mount the speedometer on a missile, (the typical 

speed of a missile is 3 km/s and the typical length of a 
missile is 30 m) the expected time difference will be 
(v/c)(2L/c) = 2 ps comparing with the total propagation 
time between A and B of 0.2 µs (2L/c). This time 
difference is measurable using modern technology. 

 
With the possibility of measuring speed directly, new 

and better speedometers will be invented. For example, 
we can improve the prototype of the speedometer by 
letting the light pulse reflect many times between two 
mirrors before it arrives at the other end (fig. 11). Then 
the propagation time is much longer than 2L/c. Therefore, 
the possible time difference will be much longer than 
(v/c)(2L/c). Besides, if the fiber-optic Michelson-Morley 
experiment in a frame relative to the ECI frame shows a 
time difference, the fiber-optic Michelson interferometer 
can be utilized as a new speedometer also, although it 
only detects a second-order effect.  
 
RE-EXAMINE AND RE-CONSTRUCT SPECIAL 
RELATIVITY  
 

When we state that the GPS operations contradict the 
two principles of Special Relativity, we do not mean that 
every thing in Special Relativity is incorrect. Some 
deductions in Special Relativity, like the relation between 
mass and speed, have strong experimental support. We 
should re-examine Special Relativity: for the parts that 
have experimental support, we should keep them; for the 
parts that lack experimental support, we have to re-think 
them; for the parts that contradict experimental results, we 
must reject them. 
 

If the crucial experiment shows a time difference as 
we calculated and therefore, refutes the two principles of 
Special Relativity, then we must re-construct Special 
Relativity from its foundations. From the calculations 
given before, we find that the speed of light in a reference 
frame moving relative to the ECI frame is c – v or c + v. 
Therefore, the Galilean transformation has its place in the 
new theory. We also know that the relation between mass 
and speed is based on the Lorentz transformation. 
Therefore, the Lorentz transformation also has its place in 



the new theory. In Special Relativity, the Galilean 
transformation is replaced by the Lorentz transformation 
and these two do not co-exist. Can we reconcile these two 
so that both transformations can co-exist in the new 
theory? It is possible, and the answer lies in the preferred 
frame. Let us recall the history of physics one hundred 
years ago. Before Einstein’s first paper of Special 
Relativity was published in 1905, it had been known that 
the mass of an electron increased with its speed relative to 
the laboratory [11]. In fact, it immediately brought a 
serious problem for the viewpoint that motion is purely 
relative. If motion really is purely relative, then speed is 
also purely relative, and therefore, mass must be purely 
relative. A heuristic answer for this problem is that the 
preferred frame, the ECI frame, is not only preferred for 
the propagation of photons with zero rest mass near the 
earth, but also is preferred for the motion of other 
particles or bodies with finite rest mass near the earth, 
e.g., electrons Because there is a preferred frame near the 
earth, we can identify two different kinds of motion. The 
motion relative to the preferred frame is a true motion, 
and the motion relative to the other reference frames is an 
apparent motion. For example, an airplane moving 
eastward with a speed of v relative to the ECI frame is in a 
true motion. If in the airplane, there is an electron moving 
westward with a speed of v relative to the airplane, its 
motion relative to the airplane is an apparent motion, its 
true motion, in fact, is stationary in the preferred frame. In 
this case, the mass of the electron will not increase. 
Because now we have two different kinds of motion, we 
could have two different transformations. The Lorentz 
transformation is suitable for the transformation between 
two true motion states, like a stationary electron and a 
moving electron. Otherwise, the Galilean transformation is 
suitable, for example, for measuring the speed of light in a 
moving airplane.  
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